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Abstract 

In semistructured data, the information that is normally as- 
sociated with a schema is contained within the data, which is 
sometimes called “self-describing”. In some forms of semi- 
structured data there is no separate schema, in others it 
exists but only places loose constraints on the data. Semi- 
structured data has recently emerged as an important topic 
of study for a variety of reasons. First, there are data sources 
such as the Web, which we would like to treat as databases 
but which cannot be constrained by a schema. Second, it 
may be desirable to have an extremely flexible format for 
data exchange between disparate databases. Third, even 
when dealing with structured data, it may be helpful to view 
it. as semistructured for the purposes of browsing. This tu- 
torial will cover a number of issues surrounding such data: 
finding a concise formulation, building a sufficiently expres- 
sive language for querying and transformation, and opti- 
mizat,ion problems. 

1 The motivation 

The topic of semistructured data (also called unstructured 
data) is relatively recent, and a tutorial on the topic may 
well be premature. It represents, if anything, the conver- 
gence of a number of lines of thinking about new ways to 
represent and query data that do not completely fit with 
conventional data models. The purpose of this tutorial is 
to to describe this motivation and to suggest areas in which 
further research may be fruitful. For a similar exposition, 
the reader is referred to Serge Abiteboul’s recent survey pa- 
per PI. 

The slides for this tutorial will be made available from a 
section of the Penn database home page 
http://vnn.cis.upenn.edu/“db. 
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1.1 Some data really is unstructured 

The most obvious motivation comes from the need to bring 
new forms of data into the ambit of conventional database 
technology. Some of these, such as documents with struc- 
tured text [3, 21 and data formats [9, 171, while they may 
call for increasingly expressive query Ianguages and new op- 
timization techniques, only require mild extensions to the 
existing notion of data models such as ODMG [13]. How- 
ever these extensions still require the prior imposition of 
structure on the data, and there are some forms of data for 
which this is genuinely difficult. 

The most immediate example of data that cannot be con- 
strained by a schema is the World-Wide-Web. As database 
researchers we would like to think of this as a database, but 
to what extent are database tools available for querying or 
maintaining the web? Most web queries exploit information 
retrieval techniques to retrieve individual pages from their 
contents, but there is little available that allows us to use 
the structure of the web in formulating queries, and since 
the web does not obviously conform to any standard data 
model, we need a method of describing its structure. 

Another example, little known to the database commu- 
nity but responsible for piquing the author’s interest in this 
topic, is the database management system ACeDB, which 
is popular with biologists [36]. Superficially it looks like 
an object-oriented database system, for it has a schema 
language that resembles that of an object-oriented DBMS; 
but this schema imposes only loose constraints on the data. 
Moreover the relationship between data and schema is not 
easily described in object-oriented terms, and there are struc- 
tures that are naturally expressed in ACeDB, such as trees of 
arbitrary depth, that cannot be queried using conventional 
techniques. 

1.2 Data Integration 

A second motivation is that of data exchange and transfor- 
mation, which is the starting point for the Tsimmis project 
[33, 211 at Stanford. The rationale here is that none of the 
ercisting data models is all-embracing, so that it is diflicult 
to build software that will easily convert between two dis- 
parate models. The Object Exchange Model (OEM) offers 
a highly flexible data structure that may be used to cap- 
ture most kinds of data and provides a substrate in which 
almost any other data structure may be represented. In ef- 
fect, OEM is an internal data structure for exchange of data 
between DBMSs, but having such a structure invites the 
idea of querying data in OEM format directly. 
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Figure 1: An example movie database. 

1.3 Browsing 

A final motivation is that of browsing. Generally speaking, 
a user cannot write a database query without knowledge 
of the schema. However, schemes may have opaque termi- 
nology and the rationale for the design is often difllcult to 
understand. It may help in understanding the schema to be 
able to query data without full knowledge of the schema. 
For example the queries, 

l Where in the database is the string “Casablanca” to 
be found? 

l Are there integers in the database greater than 216? 

l What objects in the database have an attribute name 
that starts with “act” 

Such questions cannot be answered in any generic fashion 
by standard relational or object-oriented query languages. 
While languages have been proposed that allow schema and 
data to be queried simultaneously [24] in the context of 
relational and object-oriented database systems, these lan- 
guages do not have the flexibiity to express complex con- 
straints on paths, and it is not clear how their implementa- 
tion will work on the structures described below. 

2 The Model 

The unifying idea in semi-structured data is the representa- 
tion of data as some kind of graph-like or tree-like structure. 
Although we shall allow cycles in the data, we shall gener- 
ally refer to these graphs as trees. The example in figure 1 is 
taken from [lo] in which the data model is formalized as an 
edge labeled graph. The structure is taken (with some inac- 
curacies) from a well-known web database [23] that provides 
a good example of semistructured data. There are several 
things to note about it. If one confines ones attention to the 
parts of the database below Movie edges, the data appears 
fairly regular except that there are two ways of representing 
a cast. That is, the data does not quite fit with some re- 
lational or object-oriented presentation. Edges are labeled 
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both with data, of types such as int and string and possi- 
bly other base or external abstract types (video, audio etc.). 
Edges are also with names such as Movie and Title that 
would normally be used for attribute or class names, We 
shall refer to such labels as symbols. Internally they are rep- 
resented as strings. Note that arrays may be represented by 
labeling internal edges with integers. We can formulate the 
type of this kind of labeled tree as: 

type label = int 1 string 1 .,. 1 symbol 
type tree = set(labe1 x tree) 

The first line describes a tagged union or variant, the 
second says that a tree is a set of label/tree pairs. The edges 
out of nodes in our trees are assumed to be unordered. 

There are a number of variations on this basic model, 
and it is worth briefly reviewing them. In [5] leaf nodes 
are labeled with data, internal nodes are not labeled with 
meaningful data, and edges are labeled only with symbols 

type base = id 1 string I... 
type tree = base 1 set(symbo1 x tree) 

The differences between the two models are minor and 
give rise to minor differences in the query language. It is 
easy to define mappings in both directions. 

Another possibility is to allow labels on internal nodes, 
for example: 

type base = int 1 string [ . . . 1 symbol 
type tree = label x set(labe1 x tree) 

The problem with using this representation directly is 
that it makes the operation of taking the union of two trees 
difficult to define. However, by introducing extra edges, 
this represaentation can be converted into one of the edge- 
labelled representations above. 

A final and more complex issue is that of object identity, 
by which we mean node labels - or possibly edge labels 
- that, apart from an equality test, are not observable in 
the query language. In OEM, object identities are used as 
node labels and place-holders to define trees. While object- 
identities provide an efficient way to define and test equality 
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within a database, they pose problems when comparing data 
across databases. See [lo, 25, 321 discussions and related 
work. 

It is straightforward to encode relational and object- 
oriented databases in this model, although in the latter case 
one must take care to deal with the issue of object-identity. 
However, the coding is not unique, and the examples in 
[IO] and [.!i] show some differences in how tuples of sets are 
treated. 

The term “self describing” is often used to describe un- 
struct,ured data. In each of the models we have described, 
the data is a tagged union type, and one can imagine a pro- 
gram whose behavior is dynamically determined by “switch- 
ing” on the type. For example, a program’s behavior may 
be altered by whether it finds an integer or string as a label, 
and one would expect any language for dealing with semi- 
structured data to incorporate predicates that describe the 
type of an edge or node. The situation is similar to that 
in programming languages. Lisp and many interpreted and 
scripting languages are dynamically typed. Predicates are 
available to determine (at run time) type of a value or class 
of an object. Languages in the Algol tradition (Pascal, C, 
&f L, Modula) are statically typed. Predicates are not needed 
to determine the type of a value because it is known from the 
source code of the program and hence to the programmer. 
There is a good analogy between dynamic type systems and 
semistructured data on one hand, and static type systems 
and databases with schemas on the other 

3 Query Languages 

There appear to be two general approaches to devising query 
languages for semistructured data. First, take SQL (or per- 
haps OQL[l4,13]) as a starting point and add enough “fea- 
tures” to perform a useful class of queries. The second ap- 
proach is to start from a language based on some formal 
notion of computation on semistructured data then to mas- 
sage that language into acceptable syntax. It is remarkable 
that the two approaches appear to end up with very similar 
languages. 

Let us start with the first approach to see what what 
kinds of queries are useful. The following SQL-like syntax 
suggests itself: 

select Entry.Movie.Title 
from DB 
where Entry.Movie.Director . . . 

However the syntax does not make clear how much of the 
two pat,hs Entry.Movie.Title and Errtry.Movie.Director 
are to be taken as the same. The solution is to introduce 
variables to indicate how paths or edges are to be tied to- 
gether. These variables can then be used in other expres- 
sions to form new structures. Label variables, tree variables 
and possibly path variables are needed to express a reason- 
able set, of queries. 

The next problem is that one wants to specify paths of 
arbitrary length to find, for example, all the strings in the 
database. This requires us to be able to express arbitrary 
pat,hs in our syntax. Even this is not enough. Consider the 
problem of finding whether “AllenJ8 acted in “Casablanca”. 
One might try this by searching for paths from a Movie 
edge down to an “AllerY edge, but one would not want 
t.his path to contain another Movie edge. These problems 
indicate that one would like to have something like regular 
expressions to constrain paths. 

The “select” fragment of UnQL[lO] and the Lore1 query 
language [5] solve these problems with very similar syntactic 
forms. Lore& which is a component of the Lore project [27] 
requires a rich set of overloadings for its operators for deal- 
ing with comparisons of objects with values and of values 
with sets. These are avoided in UnQL by not having object 
identity and exploiting a simple form of pattern matching. 
Other languages that use a SQL-like syntax include a pre- 
cursor to Lore1 [34], and WebSQL [29, 71 which contains a 
number of constructs specific to web queries. A language 
for web site management is proposed in [18]. 

Having asked what the surface syntax should look like, 
one wants to ask what the underlying computational strat- 
egy should be. Here there appear to be two principled strate- 
gies. The first is to model the graph as a relational database 
and then exploit a relational query language. In our labeled 
graph model this is remarkably simple. We can take the 
database as a large relation of type (node-id, label, node-id) 
and consider the expressive power of relatianal languages 
on this structure, but this apparently simple approach has 
a number of complications: 

Our labels are drawn from a heterogeneous collection 
of types, so it may be appropriate to use more than 
one relation. 

If information also is held at nodes, one needs addi- 
tional relations to express this. 

The node identifiers may only be used as temporary 
node labels, and one may want to limit the way they 
can appear in the output of the query. How they are 
used is related to the discussion of object identity. 

We are concerned with what is accessible from a given 
“root” by forward traversal of the edges, and one may 
want to limit the languages appropriately. 

Some forms of unbounded search will require recursive 
queries, i.e., a Ggraph datalog”, and such languages are pro- 
posed in [26, 161 for the web and for hypertext. Theoretical 
treatments of queries that deal with computation on graphs 
or on the web appear in [6, 301. It should also be mentioned 
that this model of computation is used in [5,15] as a starting 
point for optimization. 

The second strategy is adopted in the basis for UnQL 
[ll, lo]. Here the starting point is that of structural recur- 
sion, and is an extension of a principle put forward in [12] 
that there are natural forms of computation associated with 
the type. For semistructured data one starts with the natu- 
ral form of recursion associated with the-recursive datatype 
of labeled trees. However, some restri&ions need to be 
placed for such recursive programs to be well-defined: we 
want them to be well-defined on graphs with cycles. These 
restrictions give rise to an algebra that can be viewed as 
having two components: a “horizontal” component that ex- 
presses computations across the edges of a given node (and 
from this, computations to a fixed depth from the root); and 
a %ertical” component that expresses computations that go 
to arbitrary depths in the graph. A property of this algebra 
is that, when restricted to input and output data that con- 
form to a relational (nested relational) schema, it expresses 
exactly the relational (nested relational) algebra. Hence an 
SQL-like language is a natural fragment of UnQL. 

The SQL or OQL like languages we have mentioned typ- 
ically bring information to the surface, but they are not 
capable of performing complex or “deep” restructuring of 
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the data. Simple examples of such operations include delet- 
ing/collapsing edges with a certain property, relabeling edges, 
or performing local interchanges. Both Ugraph datalog” and 
UnQL are capable of various forms of restructuring. For ex- 
ample, in UnQL one can write a query that corrects the 
egregious error in the “Bacall” edge label. One can also 
perform a number of global restructuring functions such as 
deleting edges with certain properties or adding new edges 
t.o “short-circuit” various paths. The the relationship be- 
tween the restructuring possible in UnQL and what can be 
done in “graph datalog” is not understood. Some simple 
forms of restructuring are also present in a view definition 
language proposed in [4]. 

4 Implementation and Optimizations 

This topic is very much in its infancy and again depends on 
the underlying representation of the data. Moreover the op- 
t.imization prblems differ depending on whether one is using 
a semistructured model as an interface to existing data or 
one is building a data structure to represent semistructured 
data directly [28]. In the former case the extensions of ex-. 
isting techniques for optimization of object-oriented or re- 
lational query languages mentioned above may be exploited 
together with the,,addition of path or text indices on labels 
and strings. In the second case, diik layout and clustering, 
together witIi appropriate indexing, is also important. 

In [lo] a large class of computations can be shown to 
be translatable into a basic graph transformation technique 
which, in turn, allows some simple optimizations. Also some 
of the basic optimizations of the relational algebra can be 
applied to the “vertical” computations. In [35] it is shown 
how an analysis of the query, combined with some segmen- 
tation of the graph into local “sites” can be used to decom- 
pose a query into independent, parallel sub-queries. In [5] 
and [15] extensions to optimization techniques for object- 
oriented query languages are exploited. In [19] a translation 
is specified for a fragment UnQL into a an underlying rela- 
tional structure. 

5 Adding Structure 

One of the main attractions of semistructured data is that 
it is unconstrained. Nevertheless, it may be appropriate 
to impose (or to discover) some form of structure in the 
data. In [8] a schema is defined as a graph whose edges are 
labeled with predicates and the property of simulation is 
used to describe the relationship between data and schema. 
In [31, 221 the schema is also an edge labeled graph and the 
stronger relationship of automata equivalence is used. In 
[20] schemas are used for further optimization. 

Schemas are useful for browsing and for providing partial 
answers to queries. They will also be needed for the passage 
back from semistructured to structured data, for which a 
richer notion of schema is necessary. This is an area in 
which much further work is needed. 
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