
www.manaraa.com

Semistructured Data *

Peter Buneman

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 191046389

peter@cis.upenn.edu

Abstract

In semistructured data, the information that is normally as-
sociated with a schema is contained within the data, which is
sometimes called “self-describing”. In some forms of semi-
structured data there is no separate schema, in others it
exists but only places loose constraints on the data. Semi-
structured data has recently emerged as an important topic
of study for a variety of reasons. First, there are data sources
such as the Web, which we would like to treat as databases
but which cannot be constrained by a schema. Second, it
may be desirable to have an extremely flexible format for
data exchange between disparate databases. Third, even
when dealing with structured data, it may be helpful to view
it. as semistructured for the purposes of browsing. This tu-
torial will cover a number of issues surrounding such data:
finding a concise formulation, building a sufficiently expres-
sive language for querying and transformation, and opti-
mizat,ion problems.

1 The motivation

The topic of semistructured data (also called unstructured
data) is relatively recent, and a tutorial on the topic may
well be premature. It represents, if anything, the conver-
gence of a number of lines of thinking about new ways to
represent and query data that do not completely fit with
conventional data models. The purpose of this tutorial is
to to describe this motivation and to suggest areas in which
further research may be fruitful. For a similar exposition,
the reader is referred to Serge Abiteboul’s recent survey pa-
per PI.

The slides for this tutorial will be made available from a
section of the Penn database home page
http://vnn.cis.upenn.edu/“db.

‘This work was partly supported by the Army Research Office
(DAAH0495-1-0169) and the National Science Foundation (CCR92-
16122).

^ . . -* ..A, I’&
Permission to make digital/kard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists. requires specific
permission and/or fee
PODS ‘97 Tucson Arizona USA
Copyright 1997 ACM O-89791-910-6/97/05 .X%50

1.1 Some data really is unstructured

The most obvious motivation comes from the need to bring
new forms of data into the ambit of conventional database
technology. Some of these, such as documents with struc-
tured text [3, 21 and data formats [9, 171, while they may
call for increasingly expressive query Ianguages and new op-
timization techniques, only require mild extensions to the
existing notion of data models such as ODMG [13]. How-
ever these extensions still require the prior imposition of
structure on the data, and there are some forms of data for
which this is genuinely difficult.

The most immediate example of data that cannot be con-
strained by a schema is the World-Wide-Web. As database
researchers we would like to think of this as a database, but
to what extent are database tools available for querying or
maintaining the web? Most web queries exploit information
retrieval techniques to retrieve individual pages from their
contents, but there is little available that allows us to use
the structure of the web in formulating queries, and since
the web does not obviously conform to any standard data
model, we need a method of describing its structure.

Another example, little known to the database commu-
nity but responsible for piquing the author’s interest in this
topic, is the database management system ACeDB, which
is popular with biologists [36]. Superficially it looks like
an object-oriented database system, for it has a schema
language that resembles that of an object-oriented DBMS;
but this schema imposes only loose constraints on the data.
Moreover the relationship between data and schema is not
easily described in object-oriented terms, and there are struc-
tures that are naturally expressed in ACeDB, such as trees of
arbitrary depth, that cannot be queried using conventional
techniques.

1.2 Data Integration

A second motivation is that of data exchange and transfor-
mation, which is the starting point for the Tsimmis project
[33, 211 at Stanford. The rationale here is that none of the
ercisting data models is all-embracing, so that it is diflicult
to build software that will easily convert between two dis-
parate models. The Object Exchange Model (OEM) offers
a highly flexible data structure that may be used to cap-
ture most kinds of data and provides a substrate in which
almost any other data structure may be represented. In ef-
fect, OEM is an internal data structure for exchange of data
between DBMSs, but having such a structure invites the
idea of querying data in OEM format directly.

117

www.manaraa.com

Figure 1: An example movie database.

1.3 Browsing

A final motivation is that of browsing. Generally speaking,
a user cannot write a database query without knowledge
of the schema. However, schemes may have opaque termi-
nology and the rationale for the design is often difllcult to
understand. It may help in understanding the schema to be
able to query data without full knowledge of the schema.
For example the queries,

l Where in the database is the string “Casablanca” to
be found?

l Are there integers in the database greater than 216?

l What objects in the database have an attribute name
that starts with “act”

Such questions cannot be answered in any generic fashion
by standard relational or object-oriented query languages.
While languages have been proposed that allow schema and
data to be queried simultaneously [24] in the context of
relational and object-oriented database systems, these lan-
guages do not have the flexibiity to express complex con-
straints on paths, and it is not clear how their implementa-
tion will work on the structures described below.

2 The Model

The unifying idea in semi-structured data is the representa-
tion of data as some kind of graph-like or tree-like structure.
Although we shall allow cycles in the data, we shall gener-
ally refer to these graphs as trees. The example in figure 1 is
taken from [lo] in which the data model is formalized as an
edge labeled graph. The structure is taken (with some inac-
curacies) from a well-known web database [23] that provides
a good example of semistructured data. There are several
things to note about it. If one confines ones attention to the
parts of the database below Movie edges, the data appears
fairly regular except that there are two ways of representing
a cast. That is, the data does not quite fit with some re-
lational or object-oriented presentation. Edges are labeled

118

both with data, of types such as int and string and possi-
bly other base or external abstract types (video, audio etc.).
Edges are also with names such as Movie and Title that
would normally be used for attribute or class names, We
shall refer to such labels as symbols. Internally they are rep-
resented as strings. Note that arrays may be represented by
labeling internal edges with integers. We can formulate the
type of this kind of labeled tree as:

type label = int 1 string 1 .,. 1 symbol
type tree = set(labe1 x tree)

The first line describes a tagged union or variant, the
second says that a tree is a set of label/tree pairs. The edges
out of nodes in our trees are assumed to be unordered.

There are a number of variations on this basic model,
and it is worth briefly reviewing them. In [5] leaf nodes
are labeled with data, internal nodes are not labeled with
meaningful data, and edges are labeled only with symbols

type base = id 1 string I...
type tree = base 1 set(symbo1 x tree)

The differences between the two models are minor and
give rise to minor differences in the query language. It is
easy to define mappings in both directions.

Another possibility is to allow labels on internal nodes,
for example:

type base = int 1 string [. . . 1 symbol
type tree = label x set(labe1 x tree)

The problem with using this representation directly is
that it makes the operation of taking the union of two trees
difficult to define. However, by introducing extra edges,
this represaentation can be converted into one of the edge-
labelled representations above.

A final and more complex issue is that of object identity,
by which we mean node labels - or possibly edge labels
- that, apart from an equality test, are not observable in
the query language. In OEM, object identities are used as
node labels and place-holders to define trees. While object-
identities provide an efficient way to define and test equality

www.manaraa.com

within a database, they pose problems when comparing data
across databases. See [lo, 25, 321 discussions and related
work.

It is straightforward to encode relational and object-
oriented databases in this model, although in the latter case
one must take care to deal with the issue of object-identity.
However, the coding is not unique, and the examples in
[IO] and [.!i] show some differences in how tuples of sets are
treated.

The term “self describing” is often used to describe un-
struct,ured data. In each of the models we have described,
the data is a tagged union type, and one can imagine a pro-
gram whose behavior is dynamically determined by “switch-
ing” on the type. For example, a program’s behavior may
be altered by whether it finds an integer or string as a label,
and one would expect any language for dealing with semi-
structured data to incorporate predicates that describe the
type of an edge or node. The situation is similar to that
in programming languages. Lisp and many interpreted and
scripting languages are dynamically typed. Predicates are
available to determine (at run time) type of a value or class
of an object. Languages in the Algol tradition (Pascal, C,
&f L, Modula) are statically typed. Predicates are not needed
to determine the type of a value because it is known from the
source code of the program and hence to the programmer.
There is a good analogy between dynamic type systems and
semistructured data on one hand, and static type systems
and databases with schemas on the other

3 Query Languages

There appear to be two general approaches to devising query
languages for semistructured data. First, take SQL (or per-
haps OQL[l4,13]) as a starting point and add enough “fea-
tures” to perform a useful class of queries. The second ap-
proach is to start from a language based on some formal
notion of computation on semistructured data then to mas-
sage that language into acceptable syntax. It is remarkable
that the two approaches appear to end up with very similar
languages.

Let us start with the first approach to see what what
kinds of queries are useful. The following SQL-like syntax
suggests itself:

select Entry.Movie.Title
from DB
where Entry.Movie.Director . . .

However the syntax does not make clear how much of the
two pat,hs Entry.Movie.Title and Errtry.Movie.Director
are to be taken as the same. The solution is to introduce
variables to indicate how paths or edges are to be tied to-
gether. These variables can then be used in other expres-
sions to form new structures. Label variables, tree variables
and possibly path variables are needed to express a reason-
able set, of queries.

The next problem is that one wants to specify paths of
arbitrary length to find, for example, all the strings in the
database. This requires us to be able to express arbitrary
pat,hs in our syntax. Even this is not enough. Consider the
problem of finding whether “AllenJ8 acted in “Casablanca”.
One might try this by searching for paths from a Movie
edge down to an “AllerY edge, but one would not want
t.his path to contain another Movie edge. These problems
indicate that one would like to have something like regular
expressions to constrain paths.

The “select” fragment of UnQL[lO] and the Lore1 query
language [5] solve these problems with very similar syntactic
forms. Lore& which is a component of the Lore project [27]
requires a rich set of overloadings for its operators for deal-
ing with comparisons of objects with values and of values
with sets. These are avoided in UnQL by not having object
identity and exploiting a simple form of pattern matching.
Other languages that use a SQL-like syntax include a pre-
cursor to Lore1 [34], and WebSQL [29, 71 which contains a
number of constructs specific to web queries. A language
for web site management is proposed in [18].

Having asked what the surface syntax should look like,
one wants to ask what the underlying computational strat-
egy should be. Here there appear to be two principled strate-
gies. The first is to model the graph as a relational database
and then exploit a relational query language. In our labeled
graph model this is remarkably simple. We can take the
database as a large relation of type (node-id, label, node-id)
and consider the expressive power of relatianal languages
on this structure, but this apparently simple approach has
a number of complications:

Our labels are drawn from a heterogeneous collection
of types, so it may be appropriate to use more than
one relation.

If information also is held at nodes, one needs addi-
tional relations to express this.

The node identifiers may only be used as temporary
node labels, and one may want to limit the way they
can appear in the output of the query. How they are
used is related to the discussion of object identity.

We are concerned with what is accessible from a given
“root” by forward traversal of the edges, and one may
want to limit the languages appropriately.

Some forms of unbounded search will require recursive
queries, i.e., a Ggraph datalog”, and such languages are pro-
posed in [26, 161 for the web and for hypertext. Theoretical
treatments of queries that deal with computation on graphs
or on the web appear in [6, 301. It should also be mentioned
that this model of computation is used in [5,15] as a starting
point for optimization.

The second strategy is adopted in the basis for UnQL
[ll, lo]. Here the starting point is that of structural recur-
sion, and is an extension of a principle put forward in [12]
that there are natural forms of computation associated with
the type. For semistructured data one starts with the natu-
ral form of recursion associated with the-recursive datatype
of labeled trees. However, some restri&ions need to be
placed for such recursive programs to be well-defined: we
want them to be well-defined on graphs with cycles. These
restrictions give rise to an algebra that can be viewed as
having two components: a “horizontal” component that ex-
presses computations across the edges of a given node (and
from this, computations to a fixed depth from the root); and
a %ertical” component that expresses computations that go
to arbitrary depths in the graph. A property of this algebra
is that, when restricted to input and output data that con-
form to a relational (nested relational) schema, it expresses
exactly the relational (nested relational) algebra. Hence an
SQL-like language is a natural fragment of UnQL.

The SQL or OQL like languages we have mentioned typ-
ically bring information to the surface, but they are not
capable of performing complex or “deep” restructuring of

119

www.manaraa.com

,

‘.

.

the data. Simple examples of such operations include delet-
ing/collapsing edges with a certain property, relabeling edges,
or performing local interchanges. Both Ugraph datalog” and
UnQL are capable of various forms of restructuring. For ex-
ample, in UnQL one can write a query that corrects the
egregious error in the “Bacall” edge label. One can also
perform a number of global restructuring functions such as
deleting edges with certain properties or adding new edges
t.o “short-circuit” various paths. The the relationship be-
tween the restructuring possible in UnQL and what can be
done in “graph datalog” is not understood. Some simple
forms of restructuring are also present in a view definition
language proposed in [4].

4 Implementation and Optimizations

This topic is very much in its infancy and again depends on
the underlying representation of the data. Moreover the op-
t.imization prblems differ depending on whether one is using
a semistructured model as an interface to existing data or
one is building a data structure to represent semistructured
data directly [28]. In the former case the extensions of ex-.
isting techniques for optimization of object-oriented or re-
lational query languages mentioned above may be exploited
together with the,,addition of path or text indices on labels
and strings. In the second case, diik layout and clustering,
together witIi appropriate indexing, is also important.

In [lo] a large class of computations can be shown to
be translatable into a basic graph transformation technique
which, in turn, allows some simple optimizations. Also some
of the basic optimizations of the relational algebra can be
applied to the “vertical” computations. In [35] it is shown
how an analysis of the query, combined with some segmen-
tation of the graph into local “sites” can be used to decom-
pose a query into independent, parallel sub-queries. In [5]
and [15] extensions to optimization techniques for object-
oriented query languages are exploited. In [19] a translation
is specified for a fragment UnQL into a an underlying rela-
tional structure.

5 Adding Structure

One of the main attractions of semistructured data is that
it is unconstrained. Nevertheless, it may be appropriate
to impose (or to discover) some form of structure in the
data. In [8] a schema is defined as a graph whose edges are
labeled with predicates and the property of simulation is
used to describe the relationship between data and schema.
In [31, 221 the schema is also an edge labeled graph and the
stronger relationship of automata equivalence is used. In
[20] schemas are used for further optimization.

Schemas are useful for browsing and for providing partial
answers to queries. They will also be needed for the passage
back from semistructured to structured data, for which a
richer notion of schema is necessary. This is an area in
which much further work is needed.

6 Acknowledgments

I would like to thank Susan Davidson and Dan Suciu for
their collaboration and for stimulating my interest in this
area. I am greatly indebted to Serge Abiteboul for most
constructive discussions on a number of issues.

120

References

[I] Serge Abiteboul. Querying semi-structured data. In
Proceedings of ICDT, Jan 1997.

[2] Serge Abiteboul, Sophie Cluet, Vassilis Christophidcs,
Tova Milo, and J&me SimCon. Querying documents
in object databases. In Journal of Digital Libra&s,
volume l:l, 1997.

[3] Serge Abiteboul, Sophie Cluet, and Tova Mile, Query-
ing and updating the file. In Proceedings of 19th In-
ternational Conference on Very Large Databases, pages
73-84, Dublin, Ireland, 1993.

[4] Serge Abiteboul, Roy Goldman, Jason McHugh, Vasilis
Vassalos, and Yue Zhuge. Views for semistructured
data. Technical report, Stanford University, 1977,

[5] Serge Abiteboul, Dallan Quass, Jason McHugh, Jcn-
nifer Widom, and Janet L. Weiner. The lore1 query
language for semistructured data. In Journal of Dig-
ital Libraries, volume l:l, 1997. To appear. See
http://www-db.stanford.edu/pub/papers/.

[6] Serge Abiteboul and Victor Vianu. Queries and compu-
tation on the web. In Proceedings of ICDT, Jan 1997.

[7] Gustav0 0. Arocena, Albert0 0. Mendelzon, and
George A. Mihaila. Applications of a Web query lan-
guage. In Proc. 6th. Int’l. WWW Conf., April 1997. In
press.

[S] P. Buneman, S. Davidson, Mary Fernandea, and D. Su-
ciu. Adding structure to unstructured data. In Pro-
ceedings of ICDT, January 1997.

[9] P. Buneman, S.B. Davidson, K. Hart, C. Overton, and
L. Wong. A data transformation system for biological
data sources. In Proceedings of VLDB, Sept 1995.

[lo] Peter Buneman, Susan Davidson, Gerd Hillebrand, and
Dan Suciu. A query language and optimization tech-
niques for unstructured data. In Proceedings of ACM-
SIGMOD International Conference on Management of
Data, pages 505-516, Montreal, Canada, June 1996.

[ll] Peter Buneman, Susan Davidson, and Dan Suciu. Pro-
gramming constructs for unstructured data. In Proceccl-
ings of 5th International Workshop on Database Pro-
gramming Languages, Gubbio, Italy, September 1995.
To appear.

[12] Peter Buneman, Shamim Naqvi, Val Tannen, and Lim-
soon Wong. Principles of programming with complex
objects and collection types. Theoretical Computer Sci-
ence, 149(1):3-48, September 1995.

[13] R. G. G. Cattell, editor. The Object Database Standard:
ODMG-93. Morgan Kaufmann, San Mateo, California,
1996.

[14] Sophie Cluet and Claude Delobel. A general frame-
work for the optimization of object oriented queries. In
M. Stonebraker, editor, Proceedings A CM-SIGMOD In-
ternational Conference on Management of Data, pages
383-392, San Diego, California, June 1992.

[15] Sophie Cluet and Guido Moerkotte. Query processing
in the schemaless and semistructured context. Tcchni-
cal report, INRIA, 1997.

www.manaraa.com

I31

D73

Dl

PI

PI

[‘21]

P31

r23l

1241

[‘25]

PI

t271

P81

PI

Mariano P. Consens and Albert0 0. Mendelzon. EX-
pressing structural hypertext queries in graphlog. In
Proc. 2nd. ACM Conference on Hypertext, pages 269-
292, Pittsburgh, November 1989.

Susan B. Davidson, Christian Overton, Val Tan-
nen, and Limsoon Wong. Biokleisli: A digital li-
brary for biomedical researchers. In Journal of Dig-
ital Libraries, volume 1:1, November 1996. See
http://wu.cis.upenn.edu/ db.

Mary Fernandez, Daniela Florescu, Jaewoo Kang, Alon
Levy, and Dan Suciu. STRUDEL: A Web Site Manage
ment System. In Proceedings of ACM-SIGMOD Inter-
national Conference on Management of Data, Tuscan,
May 1997.

Mary Fernandez, Lucian Popa, and Suciu Dan.
A structure based approach to querying semi-
structured data, 1997. Manuscript available from
http://wv.research.att.com/i.nfo/{mff,suciu}.

Mary Fernandez and Dan
Suciu. Query optimizations for semi-structured data
using graph schemes, 1996. Manuscript available from
http://wuu.research.att.com/info/{mff,suciu}.

H. Garcia-Molina, Y. Papakonstantinou, D. Quass,
A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom. The
tsimmis approach to mediation: Data models and lan-
guages. In Proceedings of Second INternational Work-
shop on Next Generation Information Technologies and
Systems, pages 185-193, June 1995.

Roy Goldman and Jennifer Widom. Dataguides: En-
abling query formulation and optimization in semi-
structured databases. Technical report, Stanford, 1977.

The internet movie database. http : //us. imdb . corn/.

M. Kiier, W. Kim, and Y. Sagiv. Querying object-
oriented databases. In M. Stonebraker, editor, Proceed-
ings ACM-SIGMOD International Conference on Man-
agement of Data, pages 393-402, San Diego, California,
June 1992.

Anthony Kosky. Observational properties of databases
with object identity. Technical Report MS-CIS-95-20,
University of Pennsylvania, 1995.

Laks V.S. Lakshmanan, Fereidoon Sadri, and Iyer N.
Subramanian. A declarative language for querying
and restructuring the world-wide-web. In Post-ICDE
IEEE Workshop on Research Issues in Data Engineer-
ing (RIDE-NDS’96), New Orleans, February 1996. See
also ftp://ftp.cs.concordia.cafpub/laks/papers.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A database management system for
semistructured data. Technical report, Stanford Uni-
versity Database Group, February 1997.

3. McHugh and J. Widom. Integrating dynamically-
fetched external information into a dbms for semi-
structured data. Technical report, Stanford University,
1997.

Albert0 0. Mendelzon, George A. Miiaila, and Tova
MilO. Querying the World Wide Web. In Proc.
PDIS ‘96, pages 80-91, December 1996. AvaiIable as
tp.db.toronto.edu/pub/papers/pdis96.ps.gz.

1301

[311

[32l

[331

[341

[351

1361

Albert0 0. Mendelzon and Tova Milo. Formal mod-
els of web queries.
In Proc. PODS ‘97, May 1997. In press, available in
ftp.db.toronto.edu/pub/papers/pods97MM.ps.

S. Nestorov, 3 Ullman, Weiner J, and S. Chawathe.
Representative objects: Concise representations of
semistructured hierarchical data. In Proceedings of the
Thirteenth International Conference on Data Engineer-
ing, Birmingham, England, April 1997.

Y. Papakonstantinou, S. Abiteboul, and H. Garcia-
Molina. Object fusion in mediator systems. In Proc
2.&d. VLDB conference, September 1996.

Yannis Papakonstantinou, Hector Garcia-Molina, and
Jennifer Widom. Object exchange across heterogenous
information sources. In Proceedings of IEEE Intema-
tional Conference on Data Engineering, pages 251-260,
March 1995.

D. Quass, A. Rjaraman, Y. Sagiv, and J. Ullman.
Querying semistructured heterogeneous information. In
Proceedings of the Fourth International Conference on
Deductive and Object-oriented Databases, pages 319-
344, dec 1995.

Dan Suciu. Query decomposition for unstructured
query languages. In Proc d&d. VLDB conference,
September 1996.

Jean Thierry-Mieg and Richard Durbm. ACeDB 2.
A C. elegans Database: Syntactic definitions for the
ACeDB data base manager, 1992.

121

